A Similarity Measure Method for Symbolization Time Series
نویسندگان
چکیده
Similarity measure is the base task of time series data mining tasks. LCSS measure method has obvious limitations in the two different length time series selection of a linear function. The ELCS measure method is proposed to normalize the sequence, which introducing the scale factor to limit the search path of the similarity matrix. Experiment in hierarchical clustering algorithm shows that the improved measure makes up for the shortcomings of LCSS, improves the efficiency and accuracy of clustering and improves time complexity.
منابع مشابه
An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملImproving Time Series Classification Accuracy: Combining Global and Local Information in the Similarity Criterion
Given the widespread use of time series classification in many domains, how to improve the accuracy of classification has attracted considerable focus. In this paper, a new similarity measure (SIMscl) based on the global and local information has been proposed for improving the precision rate of one nearest neighbor (1NN) classifier. Specifically, the global information records the intrinsic...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملA review of symbolic analysis of experimental data
This review covers the group of data-analysis techniques collectively referred to as symbolization or symbolic time-series analysis. Symbolization involves transformation of raw time-series measurements (i.e., experimental signals) into a series of discretized symbols that are processed to extract information about the generating process. In many cases, the degree of discretization can be quite...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013